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There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three

constants of the third order. All other possible interactions out of 54 combinations (triplets) of inter-

acting and resulting waves are prohibited, because of restrictions of various kinds. The considered

waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal

to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experi-

mental setup and design. The analytic results are verified by comparison with numerical solutions

of initial equations. Amplitude coefficients for all ten interactions are computed as functions of fre-

quency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equa-

tion of motion is put into a general vector form and can be used for any coordinate system.
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I. INTRODUCTION

Nonlinearity is defined as any deviation from the linear

law regarding the transformation of an input signal, due to

its propagation through a carrying system. Nonlinearity may

appear in a signal at any stage: at elastic wave excitation, at

wave propagation through elastic material, through a regis-

tration device, or also at the stage of numerical data process-

ing. Here we consider nonlinearity arising as a result of the

properties inherent in elastic material. Elastic nonlinearity

of different materials, including rock samples, has been

observed for ultrasonic frequencies by many authors.1–9 In

particular, it has been shown that the velocity of elastic

waves changes with static deformation and hydrostatic pres-

sure. This phenomenon, known as acousto-elasticity, is

widely used for measurements of third-order elastic con-

stants in solids. Waves of mixed frequencies as a result of

nonlinear wave interaction have also been reported.10–17

The fundamental equations of nonlinear elastic theory, by

Murnaghan,18 effectively describe such classical nonlinear

phenomena as harmonics generation and resonant wave

scattering.

The results of this theory are well known among solid

state physicists, but most of the information is scattered.

Probably the most comprehensive description of the theory

can be found in a monograph by Zarembo and

Krasil’nikov19 published in Russian. All possible nonlinear

interactions were subsequently presented in a report by

Korneev et al.20 In response to the recent growing interest

in this subject and a new way of ultrasonic measurements

using nonlinear interactions,16,17 we reconsidered the

subject of nonlinear interactions, put them in a more gen-

eral analytical form and carefully rederived scattering coef-

ficients because in the previous publications their

expressions contain some typos and errors. The basic non-

linear equations are put in a vector form, which makes

them easy to use in an arbitrary coordinate system. Besides

basic equations, this paper presents analytical solutions for

all possible nonlinear interactions of collimated beams in a

volume of nonlinear elastic material. These solutions are

used in Ref. 17 for laboratory observations of material non-

linearity, for nondestructive evaluation and testing

purposes.

II. EQUATIONS OF MOTION

The simplest extension of linear dynamic elasticity to a

nonlinear (isotropic) form requires addition of three third

order elastic (TOE) constants—l, n, and m (Murnaghan nota-

tion18)—in addition to Lam�e parameters k and l. However,

in most previous publications, investigators have used other

sets of nonlinear parameters A, B, and C after Landau and

Lifschitz,21 which have simple relations with the previous

set,

A ¼ n; B ¼ m� n=2; C ¼ l� mþ n=2: (1)

Assuming elastic deformation in a solid, and that the

displacement vector

u ¼ uðx; y; zÞ ¼ uðx1; x2; x3Þ
¼ u1ðx1; x2; x3Þ; u2ðx1; x2; x3Þ; u3ðx1; x2; x3Þð Þ (2)

is continuous together with its spatial derivatives, the stress

components have the form
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(Here and below, repeated index s and/or j means

summation.)

The equation of motion has the form
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(6)

and has a second-order value in size.

In Eq. (6), the following notation is used:

C1 ¼ lþA

4
; C2 ¼ kþ lþA

4
þB; C3 ¼

A

4
þB;

C4 ¼ Bþ 2C; C5 ¼ kþB: (7)

Expression (6) for (i¼ 1,2,3) can be converted into a

general vector form

F ¼ C1W1 þ C2W2 þ C3W3 þ C4W4 þ C5W5; (8)

where

W1 ¼ ½Du�r� u� þ 1

2
rDðuuÞ þ ruDu

� D½u�r� u� þ r � ½u� Du� � uDru; (9)

W2 ¼
1

2
Wþrðr �r� uuÞð

�r½rru� u� � ½rru�r� u�Þ; (10)

W3 ¼ r uDu; (11)

W4 ¼
1

2
Wþ ½rru�r� u�ð

�r � ½rru� u� � rr½u�r� u�Þ; (12)

W5 ¼ rurru; (13)

W ¼ 1

2
rDðuuÞ � uDruþrurru; (14)

which is ready to use in systems other than Cartesian coordi-

nate system. For most solids, the values of the nonlinear con-

stants (A, B, C) are significantly larger than those of

constants k and l, which may be neglected in the nonlinear

parts of wave solutions.

III. NONLINEAR INTERACTION OF ELASTIC WAVES

Under some circumstances, elastic waves with different

frequencies x1 and x2 propagating in a solid may interact

and produce secondary waves of mixed (sum or difference)

frequencies xg. Theoretically, this problem is similar to

phonon-phonon interactions, a subject of quantum mechan-

ics. The conditions for such resonant interactions existing

are

xg ¼ x16x2; (15a)

kg ¼ k16k2; (15b)

where (15b) includes the corresponding wave vectors. The

“plus” sign in (15) corresponds to the case of sum resonant

frequencies; the “minus” sign corresponds to the case of dif-

ference resonant frequencies. Therefore, condition (15a)

defines the frequencies of scattered waves, while condition

(15b) defines their direction of propagation. In the case of a

liquid medium without dispersion, condition (15b) means

that interaction is possible for collinear waves only. For sol-

ids, because of the existence of two velocities of propaga-

tion, a variety of different resonance interactions become

possible. The geometries of sum and difference resonance

interactions are illustrated in Fig. 1. The interaction angle a
is a solution of the equation

xg

vg

� �2

¼ x1

v1

� �2

þ x2

v2

� �2

62
x1

v1

x2

v2

cos a; (16)

which is the result of (15b). Velocities v1, v2, vg might be

equal to either vL or vS, depending on the types of interac-

tion, where propagation velocities

vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q

s
and vS ¼

ffiffiffi
l
q

r
(17)

correspondingly relate to longitudinal and shear waves in an

elastic medium with material density q.
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The two equations in Eq. (15), together with conditions,

�1 � cos a � 1 (18)

might not be satisfied for some combinations of waves and

frequencies, which means that certain types of interactions

cannot exist.

The propagation angle w of the resonant wave is defined

by geometry in Fig. 1 and can be found from the following

equation:

tg w ¼
6

v1

v2

d sin a

16
v1

v2

d cos a
; (19)

where

d ¼ x2

x1

: (20)

Basic expressions for the interaction of elastic waves in

an isotropic solid were obtained by Jones and Kobett,22

Taylor and Rollins,23 and Zarembo and Krasil’nikov.11 They

considered the sum of two incident plane waves

u0 ¼ A1cosðx1t� k1rÞa1 þ A2 cosðx2t� k2rÞa2 (21)

with amplitudes Aj and polarizations aj ðj ¼ 1; 2Þ, which are

substituted into the equation of motion (5). Polarization vec-

tors aj are parallel to wave-number vectors kj for L-waves

and orthogonal to them for S waves. S-waves with compo-

nents polarized in the interaction plane will be referred as

SV, while shear waves with polarization orthogonal to this

plane will be referred as SH. Denoting by p that part of F

from Eq. (6) which describes the interaction of waves, it can

be written in the form

pðr; tÞ ¼ �A1A2 Iþsin ðx1þx2Þt�ðk1þk2ÞrÞ½ �
�

þ I�sin ðx1�x2Þt�ðk1�k2ÞrÞ½ �Þ; (22)

where

I6 ¼ 1

2
C1 ða1a2Þðk2

2k16k2
1k2Þ þ ða2k1Þk2ðk262k1 cos aÞa1 þ ða1k2Þk1ð2k2 cos a6k1Þa2

� �
þ 1

2
C2k1k2 cos a ða1a2Þðk26k1Þþða2k2Þa16ða1k1Þa2½ �

þ 1

2
C3 ða1k2Þ ða2k2Þ6ða2k1Þð Þk1þða2k1Þ ða1k2Þ6ða1k1Þð Þk2½ �

þ 1

2
C4ða2k2Þ ða1k2Þk26ða1k1Þk1½ � þ 1

2
C5 ða1k1Þk2

2a26ða2k2Þk2
1a1

� �
: (23)

Expressions of the forms (xy) in Eq. (23) and later denote

scalar products.

If there is a volume V inside the medium where the pri-

mary beams are well collimated and if it is assumed that

waves interact only in this volume, it is possible to obtain a

solution for the scattered secondary field in the far field,

u1ðr; tÞ ¼
A1A2

4prq

X
n¼þ;�

ðInr̂Þr̂
v2

L

Vn
Lþ

In � ðInr̂Þr̂
v2

S

Vn
S

 !
;

(24)

where r ¼ rr̂ jr̂j ¼ 1, is the radius vector from the center

point of the interaction region and observation point. Here

and later, n¼“þ” indicates the sum frequency, and n¼“�”

indicates the difference frequency interactions.

Integrals

V6
g ¼

ð
V

sin D6
g � k1 6 k2 �

x1 6 x2

vg
r̂

� �
r0

� �
dV

(25)

from Eq. (24) are referred to as volume factors, and

D6
g ¼ ðx1 6 x2Þ

r

vg
� t

� �
(26)

is the scattering phase. In Eq. (25) r0 is the radius vector of

integration inside the volume V (geometry shown in Fig. 2).

Symbol g can be either “L” or “S,” denoting the type of scat-

tered wave.

FIG. 1. Angle definitions for (a) sum and (b) difference frequency

generation.
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Equation (24) has four terms corresponding to both sum

and difference frequencies for L and S waves. As we inte-

grate over dV, the integrand in Eq. (25) oscillates with fre-

quencies determined by the coefficients of r0, and the results

of any integration will depend on just how the waves fit into

the region V. Scattered waves have natural polarizations:

Parallel to r for L- waves and orthogonal to r for S-waves.

If we satisfy resonant conditions (15) by choosing an

appropriate direction r̂ ¼ r̂g, the corresponding coefficient of

r0 in (25) becomes equal to zero, and the amplitude of the scat-

tered wave in this direction becomes proportional to the volume

V of integration. From (24), it also follows that amplitudes of

the scattered waves are proportional to their projections in the

direction an
g, which is the unit vector of the natural polarization

of the wave. For L-waves, an
g is parallel to r̂g; for S-waves, it is

perpendicular to this vector. That means that the resonant scat-

tering amplitude may be zero even if resonant conditions (15)

are satisfied. A zero value of the scattering amplitude due to

polarization will be referred to as polarization restriction.

All types of elastic-wave resonant interactions are listed

in Table I, where signs “x” and “�x” signify that interaction is

possible, and sign “¼” signifies that interaction is possible

only when interacting waves are collinear. Sign “�x” indicates

that interaction is also possible when waves propagate antili-

nearly (in opposite directions). All other types of interactions

are forbidden. Sign “O” marks interactions that are forbidden

because of polarization restrictions; all others are forbidden

because the resonant conditions (23) for them cannot be sat-

isfied. Only 10 out of 54 potential interactions are possible.

Sum frequency resonance exists only for compressional scat-

tered waves. Sum frequency interactions for Lþ SV->L

and SVþL->L combinations are reciprocal.

A similar table of allowed and forbidden scattering

processes for an isotropic solid published in the Zarembo

and Krasil’nikov11 contains 18 possible interactions. We

believe their results are partly in error. Taylor and Rollins23

have presented five possible interactions, omitting the prob-

lem of separation of SV and SH polarization for shear waves.

Childress and Hambrick24 present eight interactions, while

Holt and Ford25 found ten interactions by numerical search

using parameters for copper.

If resonant conditions (15) are satisfied for any one type

of interaction, the scattered field from (24) may be rewritten

in the form

u1ðr; tÞ ¼ an
gWn

g

A1A2

r
Vn

g ; (27)

with amplitude coefficient

Wn
g ¼
ðInan

gÞ
4pv2

gq
: (28)

From (28), it is seen that the scattering amplitude is pro-

portional to the coefficient Wn
g with dimension length�3 and

to the scattering volume Vn
g , so the product of these quanti-

ties is dimensionless.

Analytical expressions for Wn
g of all ten possible scatter-

ing interactions are listed in Table II together with expressions

for interacting angle, a and limits, dmin, dmax, of the frequency

ratio d. In addition, the following notations are used:

Dg ¼
d

4pðkþ 2lÞ
x1

vg

� �3

; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
kþ 2l

r
¼ vS

vP
: (29)

Approximate expressions for scattering amplitudes in

Table II are derived from exact formulas, under the assump-

tion that in coefficients (7) we may neglect Lam�e constants

for components containing nonlinear TOE constants. These

expressions were verified by comparison with numerical sol-

utions for Eqs. (23) and (28). Note, that the Lam�e constants

are involved in the approximate Wn
g expressions via coeffi-

cient Dg [Eq. (29)].

IV. SCATTERING BEAMWIDTH

The scattered waves, given by (24), appear in the form

of conical beams with vertexes at the interaction zone and

maximum intensity in the direction r̂g. To investigate the

amplitudes of the scattering beams as a function of observa-

tion position, it is convenient to assume that the interaction

volume has the shape of a sphere of radius R. Any volume

factor from (25) may then be reduced to the form

V6
g ¼ D6

g

ð
V

sin aðr̂r0ÞdV ¼ 3V
j1ðaRÞ

aR
D6

g ; (30)

a ¼
����k1 6 k2 �

x1 6 x2

vg
r̂

����; (31)

TABLE I. Forbidden and allowed scattering processes for an isotropic solid:

“¼”—possible only when waves are collinear (propagate in one direction);

“x” and “�x”—scattering possible for certain range of parameters, where “�x”

also means that antilinear interaction is possible (waves propagate in oppo-

site directions); “O”—polarization restriction, blank space—interaction

restriction.

Scattered waves

xr¼x1þx2 xr¼x1�x2

N Interaction waves L SV SH L SV SH

1 L(x1) and L(x2) ¼ ¼ �x O

2 L(x1) and SV(x2) �x x �x O

3 SV(x1) and L(x2) x

4 SV(x1) and SV(x2) �x O O O O

5 SH(x1) and SH(x2) �x O O O O

6 L(x1) and SH(x2) O O O �x

7 SH(x1) and L(x2) O

8 SH(x1) and SV(x2) O O O O O

9 SV(x1) and SH(x2) O O O O O

FIG. 2. Interaction of two plane waves in a volume V of a nonlinear elastic

material.
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TABLE II. Nonlinear scattering coefficients of two plane elastic wave interaction.

# Interaction cosa dmin dmax Scattering coefficient

1 L(x1)þL(x2) 1 0 1 DL
1þd

2
ð4C1þ2C2þ2C3þC4þC5Þ�DLð1þdÞð2mþ lÞ

!L(x1þx2)

2 L(x1)þL(x2) 1 0 1 �DL
1� d

2
ð4C1 þ 2C2 þ 2C3 þ C4 þ C5Þ� �DLð1� dÞð2mþ lÞ

!L(x1�x2)

3 L(x1)þL(x2)
1

c2
� 1

2
d þ 1

d

� �
1

c2
� 1

� �
1� c
1þ c

1 �DS
1þ d

4
c2sin2að2C1 þ C2 þ C3Þ� � DSð1þ dÞc2msin2a=2

!SV(x1�x2)

4 L(x1)þSV(x2) c� d

2

1

c
� c

� �
0

2c
1� c

� DL

2c3

sina
1þ d

½C1ð3dcþ 2qÞ þ C2qþC3ðdcþ qÞ þ dcC5�

!L(x1þx2) �� DL

c3

sina
1þ d

ðdcþ qÞm
q ¼ cosað2dccosaþ d2 þ 2c2Þ

5 L(x1)þSV(x2) cþ d

2

1

c
� c

� �
0

2c
1þ c

� DL

2c3

sina
1� d

½C1ð3dcþ 2qÞ þ C2qþC3ðdcþ qÞ þ dcC5�

!L(x1�x2) �� DL

c3

sina
1� d

ðdcþ qÞm; q ¼ �cosað2� 2d þ d2Þ

6 L(x1)þSV(x2)
1

c
� 1

2d

1

c
� c

� �
1� c

2

1þ c
2

DS

2c3ð1� dÞ ½C1ð2qd � c2cos2aþ cdcosaÞ�C2qccosaþ C3c2sin2aþ C5dq�

!SV(x1�x2) � DS

2c3

m

1� d
ð2dccosa� d2 � c2cos2aÞ

q ¼ ccosa� d

7 SV(x1)þL(x2) c� 1

2d

1

c
� c

� �
1� c

2c
1 DL

2c3

sina
1þ d

½C1ð3dcþ 2qÞ þ C2qþC3ðdcþ qÞ þ dcC5�

!L(x1þx2) �DL

c3

sina
1þ d

ðdcþ qÞm;
q ¼ cosað2dccosaþ 1þ 2c2d2Þ

8 SV(x1)þSV(x2) c2 þ 1

2
d þ 1

d

� �
c2 � 1
� 	 1� c

1þ c
1þ c
1� c

DL
1þ d

2c2
ðC1 cos2aþ C2 cos2a� C3 sin2aÞ�DL

1þ d

2c2
mcos2a

!L(x1þx2)

9 SH(x1)þSH(x2) c2 þ 1

2
d þ 1

d

� �
c2 � 1
� 	 1� c

1þ c
1þ c
1� c

DL

2c4ð1þ dÞ ½C1ð2d þ cosað1þ d2ÞÞþC2c2cosað1þ dÞ2�

!L(x1þx2) � DL

2c4ð1þ dÞ ½mc2 cos að1þ dÞ2þ
nð2d þ cosað1þ d2 � c2ð1þ dÞ2ÞÞ=4�

10 L(x1)þSH(x2)
1

c
� 1

2d

1

c
� c

� �
1� c

2

1þ c
2

DS

2c
½C1cos að2dcosa� cÞ�C2c cos aþ C5d�

!SH(x1�x2) �DS 2mðd � ccosaÞ � nd sin2a
� �

=ð4cÞ

FIG. 3. (Color online) Interaction L(x1)þL(x2)!L(x1þx2). FIG. 4. (Color online) Interaction L(x1)þL(x2)!L(x1�x2).
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 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  131.243.59.107 On: Fri, 14 Feb 2014 21:41:13



where V ¼ 4p=3ð ÞR3 is the volume of the sphere, j1ðxÞ is the

spherical Bessel function of the first order.

If h is the angle between resonant scattering direction

r̂g, and observation direction r̂ , we obtain

aR ¼ 2p
R

kg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos hÞ

p
; (32)

where kg is the wavelength of the scattered wave. Assuming

the interaction volume is spherical, this analysis shows that

the volume factor is proportional to the volume of the sphere.

Using the asymptotic approximation for spherical Bessel

functions in (30), we may estimate the total beamwidth hw of

the scattering beam, where the amplitude of the scattering

beam is not less than one half of its maximum. The result is

hw � 2 arccos 1� 1

10

kg

R

� �2
 !

: (33)

For small angles (hw < 0:1) (33) reduces to

hw �
kg

R
: (34)

V. NUMERICAL RESULTS

Equations from Table II allow computation of the inter-

action angle, scattering angle, and scattering coefficient for

any set of elastic parameters. Here we apply a set of parame-

ters for polyvinyl chloride (PVC), as follows: k¼ 3.64 GPa,

l¼ 1.83 GPa, l¼�33.43 GPa, m¼�20.88 GPa, n

¼ �15.86 GPa, and q¼ 1350 kg/m3. The third-order elastic

constants are measured using an acousto-elastic measure-

ment method. Amplitude coefficients Wn
g as well as interac-

tion a and scattering c angles for all possible (ten)

interactions from Tables I and II, are shown in Figs. 3–12 as

functions of the frequency ratio d ¼ x2=x1. The calcula-

tions are performed when x1¼ 2p� 1 MHz.

VI. DISCUSSION AND CONCLUSIONS

We confirm the possibility of just ten interactions for

nonlinear wave mixing, as listed in Table I. Sum frequency

interactions #4 for Lþ SV->L and #7 SVþL->L combi-

nations are reciprocal. Indeed, if in an expression for scatter-

ing coefficient for interaction #7 (Table II), we exchange

parameter d for 1/d and reverse the sign for angle a, then the

result is identical to that for interaction #4.

The results in Table II reveal a rather simple depend-

ence of scattering amplitudes on nonlinear elastic constants.

Amplitudes of two collinear LL interactions are proportional

to 2mþ l, while six interactions are proportional to m and in-

dependent of other constants. The remaining two interac-

tions, in which SH waves are involved, have more

complicated dependence on constants m and n. Note that

some frequency-ratio values cause zeroes for interaction

coefficients, but this is an easily avoidable problem for non-

linear wave experiments. These zeroes, if detected, can be

the extra constraints for determining model parameters.

FIG. 5. (Color online) Interaction L(x1)þL(x2)!SV(x1�x2).

FIG. 6. (Color online) Interaction L(x1)þSV(x2)!L(x1þx2).

FIG. 7. (Color online) Interaction L(x1)þSV(x2)!L(x1�x2).

FIG. 8. (Color online) Interaction L(x1)þSV(x2)!SV(x1�x2).
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Depending on the geometry of a sample, available sour-

ces, and nonlinear parameters of interest, an appropriate

interaction should be chosen for reaching the largest possible

amplitude of the resonant wave. Not only is this amplitude

proportional to both amplitudes Aj ðj ¼ 1; 2Þ of the primary

waves, it is also proportional to the coefficients Wn
g and the

scattering volume Vn
g . Generally, the sum frequency interac-

tions have higher amplitudes than those with difference

frequencies.

A special interest might represent reactions marked by �x
in Table I, when the primary waves propagate in exactly op-

posite directions. A laboratory setup for such a situation

might be preferable because in this case computation of

interaction angles is not needed.

The approximate expressions in Table II are derived in

assumption that TOE constants are much larger than Lame

constants, which may be neglected in Eq. (7). This assump-

tion is supported by a number of measurements for a variety

of materials.11,26–29 It should be noticed that in many publi-

cations, for evaluations of TOE constants were used the

equations from Jones and Kobett (1963), which apparently

have some errors in them.30 These errors are likely affected

the values of some of the published TOE constants, although

not affecting their orders of magnitude.

Different nature of restrictions on interaction types from

Table I suggests that in some circumstances some of the

restrictions can vanish. Thus, the polarization restriction can

vanish in anisotropic medium where wave vectors and polar-

ization vectors are not perfectly collinear (orthogonal). Also,

in such a medium the interaction restriction between two

shear waves might disappear because of different velocities

of those waves.

Determination of the interaction volume is generally an

important issue because the actual objects of study might

have a complex shape and finite sizes when an assumption

about an infinite nonlinear material is invalid. We considered

a spherical interaction volume because this case allows an

analytical solution. In practical applications (e.g., nonlinear

scanning), the shape of the material sample can be arbitrary

and the interaction volume can be evaluated by a numerical

computation of integrals (25). For simple shapes, this com-

putation should be performed just once because of repeating

geometry. We also assumed that the interaction volume has

nonzero TOE constants while the other material parameters

in that volume have the same values as in the surrounding

medium. In a general case when all the parameters change, a

correspondent linear diffraction problem should be involved.

Thus, for a spherical geometry, a linear canonical diffraction

problem can be solved using spherical harmonics,31 and then

used for evaluating of the nonlinear part. Equations (8)–(14)

can be simply converted into the spherical coordinate system

for this purpose. Consideration of such general case is

beyond the scope of this paper. The results obtained here

were applied for measurements of plastic ageing and epoxy

FIG. 10. (Color online) Interaction SV(x1)þSV(x2)!L(x1þx2).

FIG. 9. (Color online) Interaction SV(x1)þL(x2)!L(x1þx2).
FIG. 11. (Color online) Interaction SH(x1)þSH(x2)!L(x1þx2).

FIG. 12. (Color online) Interaction L(x1)þSH(x2)!SH(x1�x2).
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curing and published in Demčenko et al.32 using an immer-

sion method with a thorough discussion on the optimal

choice of laboratory parameters. In particular, some of these

measurements revealed that the observed changes indeed

can appear just in the nonlinear part of the field when the lin-

ear part remain insensitive to the changes.

The immersion method does not require a direct contact

between the measuring hardware and a specimen which

allows scanning and/or monitoring of nonlinear properties.

Nonlinear wave mixing in this application is likely to

become a routine non-destructive testing technique.
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